
Abstract The intersection seam between the two lowest
1A0 states of ozone has been determined. The potential
energy surfaces and the seam are calculated and discus-
sed in perimetric coordinates which exhibit the full three-
dimensional symmetry. The seam is shown to form a
closed curve which crosses the C2v-restricted coordinate
planes at six points. Three of these correspond to the
previously determined intersection, the starting point of
the present search. The other three correspond to highly
repulsive regions on the potential energy surface where
two atoms approach each other to within two-thirds of
the O2 bond length. At the former three points both
states have 1A1 symmetry, but at the latter three points
one state has 1A1 symmetry whereas the other has 1B2

symmetry. Consequently, there exist three additional
branches of the intersection seam between these two
states. Each of these branches lies entirely in one C2v-
restricted coordinate plane and connects to the previ-
ously discussed Cs-seam at one point. The existence of a
further intersection seam is established. A novel method
for determining intersection points is described.

Key words: Conical intersection ± Intersection seam ±
Diabatic states ± Ozone

1 Introduction

In recent investigations [1], we have found that the
ground state of ozone has a point of degeneracy, a
conical intersection, with the ®rst excited state of like
symmetry (1A1) in the C2v-restricted two-dimensional
internal coordinate space between the two ground state
minima. We have also identi®ed those features of the
electronic structure which are responsible for this
somewhat unusual phenomenon [2].

In view of the fundamental theory pertaining to
conical intersections [3], it was apparent from the be-
ginning that the point previously found would have to be
a point on a one-dimensional curve along which the two

states remain degenerate in the full three-dimensional
internal coordinate space: an intersection seam between
the 11A0 and the 21A0 states.

To our knowledge, the only previous determination
of full intersection seams between surfaces of like sym-
metry (termed ``accidental conical intersections'' by the
authors) is by Kuntz et al. who investigated the H2Cl

�
system in beautiful detail [4]. Therefore, it seemed of
general interest to map out this particular seam rather
carefully in the full internal coordinate space of Cs
symmetry. It was also an intriguing question whether the
seam would be a closed curve or move out toward the
dissociated species without closing.

In what follows we shall describe the methods we
developed for following an intersection seam and the
characteristics of the seam which was established.

2 Energy functions in terms of perimetric coordinates

2.1 Coordinate space

For the present investigation, it is essential that all three
nuclei be treated on an equal footing. To this end, we
shall use perimetric coordinates which have been previ-
ously used by James and Coolidge [5], Pekeris [6], and
Davidson [7]. We discuss relevant elements of these
coordinates in some detail in a companion paper [8].

If r12; r23; r31 are the three internuclear distances,
then the perimetric coordinates s1; s2; s3 are de®ned by
the formulas

r � r12 � r23 � r31; �1�
si � rjk � s � r=2; �2�
s � s1 � s2 � s3: �3�
They can be separated into the scale coordinate s and the
angle-dependent, but scale-independent shape coordi-
nates n1; n2 which are related to �s1 s2; s3� by
s1 � s fÿn1=

p
2ÿ n2=

p
6� 1=3g

s2 � s fn1=
p
2ÿ n2=

p
6� 1=3g

s3 � s f2=p6� 1=3g
�4�
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The parameter space of the shape coordinates �n1; n2�
covers an equilateral triangle whose dimensions are
displayed in Fig. 1, where some special points and regions
are indicated as well. Also useful are the coordinates

x1 � sn1; x2 � sn2; x3 � s=
���
3
p

�5�
which, by virtue of Eq. (4), are related to �s1; s2; s3�
through an orthogonal transformation that places the x3
axis along the ®rst-octant diagonal of the s1; s2; s3 axis
system. In order to fully appreciate and visualize the
meaning of these coordinates, the reader should consult
the explicit discussion in reference [8] which also clari®es
the following statements.

When the shape coordinates fall on one of the per-
pendiculars from one corner of the triangle in Fig. 1,
through the center, on to the opposite side, then two
internuclear distances are equal and this remains true in
the entire plane spanned by this perpendicular line and
the x3 axis. For example, for all points with n1 � 0, be
they on the n2 axis in Fig. 1 or in the plane spanned by x2
and x3, the molecule is isosceles, with nucleus 3 at the
apex. The center point, n1 � n2 � 0, as well as all points
on the x3 axis, correspond to equilateral molecules.

Two points in the shape-coordinate triangle, which
are related to each other by re¯ection with respect to the
perpendicular from corner (i) in Fig. 1 to the opposite
side (j-k), describe two molecules which are obtained
from each other by permuting atoms j and k, and, hence,
their shapes are each other's mirror images with respect
to any re¯ection plane normal to the line connecting
nuclei j and k.

2.2 Energy surfaces for homonuclear triatomic molecules

Since ozone is a homonuclear molecule, its potential
energy surface (PES) must be invariant with respect to
all permutations of its nuclei. By virtue of what has been
said in the preceding section, it is readily seen that this
invariance implies the invariance of the potential energy
surfaces with respect to the symmetry operation of the

group C3v, if applied in the parameter space of the
perimetric coordinates, with the C3 axis along the x3
coordinate axis and the three planes of symmetry being
the planes spanned by the x3 axis and the normals from
the corners of the shape-coordinate triangle of Fig. 1 to
the opposite sides. Each PES can therefore be generated
from its values in one-sixth of the entire coordinate
space. The projection of this part onto the shape
coordinate plane is shaded in Fig. 1. It follows, further-
more, that the planes spanned by the x3 axis and the
normals from the corners of the coordinate triangle of
Fig. 1 to the opposite sides, i.e. the symmetry planes of
C3v in the parameter space, contain the coordinates of all
those molecules which possess C2v symmetry. We shall
therefore call these planes the C2v-restricted coordinate
spaces. The x3 axis, i.e. the C3 axis of C3v in parameter
space, corresponds to all molecules with D3h symmetry.

The intersection seam is a curve in the three-dimen-
sional coordinate space. Since it runs on potential energy
surfaces, it too is invariant under the operations of C3v in
the parameter space and it, too, can be generated in full
after one-sixth of it has been found. It also follows from
this symmetry that such a seam must penetrate each of
the symmetry planes of the C3v group in the parameter
space at right angles.

We shall display the intersection seam by exhibiting
(1) a plot of its projection in the �n1; n2� plane inside the
triangle of Fig. 1, (2) a plot graphing the variation of
s � x3

p
3 along the just mentioned projection curve, and

(3) a plot of the intersection energy(E) along the same
curve. By virtue of the discussed symmetry properties,
the projection in the �n1; n2� plane must perpendicularly
cross the normals from the corners of the triangle in
Fig. 1 onto the opposite sides, and the plots of s and E
must have horizontal slopes at the points of crossing
these C2v-restricted coordinate spaces. These symmetry
properties apply regardless of whether the intersection
seam is a closed or an open curve.

3 Determination of the seam

3.1 Point to point extrapolation

In previous investigations [1, 2] we established the
intersection point in C2v symmetry. Because of the
threefold symmetry of the PES, this result yields in fact
three intersection points in the coordinate space, which
are shown in Fig. 1 as I1; I2; I3. Also shown are the
positions of the four minima M0;M1;M2;M3. The x3
coordinates, which are not shown, are given by the scale
parameters with the values

s�Ii� � 2:456 ÊA; s�M0� � 2:214 ÊA;

s�Mi� � 2:412 ÊA; �i � 1; 2; 3�:
We started the determination of the intersection seam at
the point I3, which has the coordinates

x�0�1 � 0; x�0�2 � ÿ0:392 ÊA; x�0�3 � 1:418 ÊA:

Since, as explained above, the seam must cross the
x2 ÿ x3 plane at a right angle, a reasonable ®rst guess for
the next point on the seam is

Fig. 1. Parameter space of the scale-independent shape coordinates.
The labelled points are de®ned in Section 3.1
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x�1�1 � e; x�1�2 � x�0�2 ; x�1�3 � x�0�3 ;

and a reasonable search surface for the exact next seam
point is the plane x�1�1 � e � constant. A search, to be
described below, on this plane around the predicted
guess yielded then the actual intersection point

�x�1�1 � e; x�1�2 ; x�1�3 �. Because of the symmetry of the seam
with respect to the plane x1 � 0, this calculation also
yielded a third intersection point, namely:

x�ÿ1�1 � ÿe; x�ÿ1�2 � x�1�2 ; x�ÿ1�3 � x�1�3 :

From here on, the initial guess for each additional seam
point was determined by a quadratic extrapolation from
the preceding three seam points. The coe�cients a to f
in the expressions

x2 � a� bx1 � cx21
x3 � d � ex1 � fx21

were determined by a ®t to the points �n�; �nÿ 1�;
�nÿ 2� of the seam and then used to predict the values

of x�n�1�2 and x�n�1�3 for x�n�1�1 � x�n�1 � e. The exact values
of x�n�1�2 and x�n�1�3 were then again determined by

searching for the intersection point in the plane

x�n�1�1 � x�n�1 � e=constant.
Approximately the same value of about e � 0:02 ÊA

was used for the increments at the various points, unless
di�culty was encountered. We were prepared to change
the extrapolation variable from x1 to some linear com-
bination of x1; x2; x3, and, correspondingly, the choice of
the search plane, in the event that the intersection seam
should curve away signi®cantly from the x1 direction.
Such a change proved, however, unnecessary because the
seam was found to stay closely parallel to the x1 axis.

Since the completion of this work, Kuntz et al. have
shown [4] that a more reliable and e�cient choice is to
construct the search plane at each point perpendicular to
the [�N ÿ 2� dimensional] intersection seam.

While the initial point of the seam corresponds to a
molecule with C2v symmetry, the molecular symmetry is
lowered to Cs for the new points on the seam, so that the
calculations involve more work. However, after having
passed through the shaded region of Fig. 1, the seam
reaches again a point where the molecule has C2v sym-
metry. This end-point can therefore be rechecked by an
independent calculation using C2v symmetry.

3.2 Planar search by minimizing �E2 ÿ E1�2

Because of the conical nature of the intersection [3], the
di�erence between the two potential energy surfaces,
�E2 ÿ E1�, cannot be ®t by a quadratic, but its square,
�DE�2, can. We therefore calculated E1 and E2 on each
plane x1 � constant for a grid around the initial guess, ®t
a quadratic to the �DE�2 values on this grid, determined
the minimum, recalculated E1 and E2 on a ®ner grid
around this minimum, and proceeded in the same
manner until the energy separation at the minimum
was reduced to less then half a microhartree.

This procedure, which is analogous to the one used in
our previous work [1] to determine the initial point I3,

proved quite straightforward. It is not overly e�cient
regarding the number of energy calculations needed and
can be considerably improved by using a quasi-Newton
procedure with the analytical derivatives, as Manaa and
Yarkony [9] have shown. More sophisticated search
procedures, based on Lagrangian formalisms using the
derivatives of �H11 ÿ H22� and H12, have been developed
by Manaa and Yarkony [10] and by Ragazos et al. [11].

However, none of these procedures can prove con-
clusively that the two surfaces in fact do become exactly
degenerate. This shortcoming is overcome by the fol-
lowing approach.

3.3 Corralling an intersection point

According to the Herzberg±Longuet-Higgins±Berry phase
theorem [3], wave functions W1 and W2 both change sign
when deformed continuously on a closed path looping
around an intersection. In our previous investigation [1],
we used this theorem as a test to prove the existence of a
true intersection between the two 11A1 states in C2v: if
there were no true intersection, neither function would
change sign. We shall now show how this approach can
be adapted for the accurate determination of the location
of an intersection once its approximate position is known.

An obvious approach is as follows. First, calculate W1

and W2 on a closed path around the suspected point of
intersection. If the wave functions do not change sign,
®nd another guess of the intersection until the wave
functions do change sign. Next calculate W1 and W2

along a line connecting opposite sides of the loop,
thereby in e�ect creating two loops each containing
about half the area of the original loop. One of the two
loops created will contain the intersection and, hence,
exhibit the sign changes in W1 and W2. The other will
not. Then, proceed to cut the loop with the intersection
in half and repeat the procedure. Successive repetitions
of this bisection will decrease the size of the loops until
the desired accuracy is reached.

This approach can, however, be considerably re®ned
by a closer analysis of the phase change. It is known [3]
that the adiabatic states W1;W2 can be expressed in terms
of two diabatic states /1;/2 by the orthogonal trans-
formation

W1 � /1 cos�a=2� � /2 sin�a=2�
W2 � ÿ/1 sin�a=2� � /2 cos�a=2�;

�6�

where the angle a is obtained from the diabatic matrix
elements Hij � h/ijH j/ji and DH � H11 ÿ H22, by the
equations

cos�a� � DH=�DH2 � H 2
12�1=2 �7�

sin�a� � H12=�DH 2 � H2
12�1=2 �8�

An intersection occurs when DH and H12 both change signs
[3]. Figure 2 exhibits a schematic diagram of the
coordinate space near an intersection. The di�erence
DH changes sign along the curve DH � 0, the o�-
diagonal element H12 changes sign along the curve
H12 � 0. Also shown is a closed path looping around the
intersection of these two curves, which is, in fact, the
point of degeneracy between the two energy surfaces.
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It follows from Eq. (7) that, in regions I and II, the
diabatic state /1 dominates in the adiabatic state W1,
and that the diabatic state /2 dominates in the adiabatic
state W2, whereas the reverse is true in regions III and
IV. Concomitantly, DH � 0 is a line of avoided cross-
ings, except that at the intersection one has a real
crossing. Consequently, one observes a change-over in
the dominant con®gurations in W1 and W2 along the
closed path whenever it crosses the curve DH � 0. On the
other hand, it also follows from Eqs. (6), (7), and (8) that
the small coe�cients in the adiabatic states, i.e. the co-
e�cients of those con®gurations which are not dominant
in W1 and W2, change sign where H12 changes sign, i.e.
whenever the path crosses the curve H12 � 0. We have
noted these connections explicitly in a previous paper [2].

By virtue of these relationships, the overall sign
change in the wave function W1, say, comes about as a
result of the individual changes illustrated in Fig. 3 when
moving around the loop. By careful monitoring of the
major and the minor con®gurations, it is therefore pos-
sible to obtain an approximate idea where the loop
around the intersection crosses the lines DH � 0 and
H12 � 0. The intersection of the lines connecting these
opposite points on the loop will then yield an approxi-
mation to the intersection.

The case at hand is a particularly favorable one since
all dominant con®gurations in the adiabatic states W1

and W2 contain doubly occupied orbitals only and,
hence, also for the diabatic states /1, /2. Consequently,

the sign changes of the coe�cients of the diabatic states
in the adiabatic wave functions are re¯ected by the sign
changes in the coe�cients of the dominant con®gurations
in the adiabatic states [1] and, hence, are easy to spot.

The method is illustrated in Fig. 4 for the determi-
nation of the intersection point in C2v symmetry. The

Fig. 2. The four regions generated by the surfaces DH = 0 and H12

= 0 around an intersection. The latter is indicated by the heavy dot

Fig. 3. Illustration of adiabatic wavefunction sign change about
intersection Fig. 4. Corralling an intersection. See text
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left-hand panels of each ®gure display increasingly
smaller paths in coordinate space looping around the
intersection point in C2v symmetry. Each loop has the
shape of a rectangle or parallelogram. The coordinates
x; y in the left-hand panel of Fig. 4a are the Cartesian
internal coordinates used previously (Fig. 3 of Ref.[1]),
while the coordinates u; v on the left-hand panels of
Figs. 4b and 4c have been rotated by 31° with respect to
x; y. In Fig. 4d, the coordinates of the left panel have
been rotated by 32° and those of Figs. 4e and 4f were
rotated by 33° with respect to x; y. The solid dots on the
loop in each left-hand panel mark the points on the path
where wave functions were calculated.

The right-hand panels show the values of the coe�-
cients of the three con®gurations which are dominant in
one state or the other, calculated at the points marked on
the loops at left. The abscissa of each panel at right
simply numbers these points sequentially. From the
preceding discussion it follows that, in the regions where
the large coe�cients exchange dominance with the small
ones, a loop must cross the line DH � 0, whereas, in the
regions where the small coe�cients change sign, the
crossing of a loop with the line H12 � 0 must occur. The
boundaries of these crossings are marked by pairs of
small bold tick marks on the abscissas of the right panels
(with generous room for error). The points correspond-
ing to these tick marks are indicated on the loops of the
corresponding panels on the left by explicit numbering.
(e.g. 5, 7, 14, 15, 16, 17, 25, 28 on the left panel of
Fig. 4a). These points, on opposite parts of the loop, are
connected by straight lines. The lines going more or less
vertically are expected to bracket the curve DH � 0,
whereas the lines going more or less horizontally are
expected to bracket the curve H12 � 0. Guided by these
lines, the corners for a smaller loop are estimated and
they are indicated by letters inside each panel. These
letters then appear at the corners of the loop on the next
panel. In six iterations, the loop has been reduced from a
0:2 ÊA� 0:2 ÊA box to a 0:0004 ÊA� 0:00003 ÊA box (in the
rotated coordinates), whereas, using the divide-by-2
method, six iterations would reduce the size of the box
only to 0:02=25 � 0:00625 ÊA. Various ways exist in which
the convergence of this procedure can be accelerated.

4 The intersection seam of the 11A0 and the 21A0 states

4.1 Ab-initio procedure

The entire intersection seam of the two lowest 1A0 states
of ozone in Cs symmetry was determined using two-
state-averaged Full Optimized Reaction Space (FORS)
wave functions, in the full active space generated by all
2p orbitals on all three oxygen atoms, giving 1292
con®gurations of symmetry Cs. The two states were
given equal weight in the averaging. The basis set was of
the generally contracted double-zeta type, viz., (11s6p1d/
3s2p1d). The s and p exponents were taken from
Dunning's VQZ basis set [12]. The 1s, 2s, and 2p
contractions were the self-consistent ®eld (SCF) orbitals,
while the 3s and 3p orbitals were simply the most di�use

Gaussians of each set. The d orbital set had an exponent
of 1.185, the one used by Dunning in his VDZ basis set.
All calculations were made with the program MOLPRO
of Werner and Knowles [13].

4.2 The intersection seam in Cs, symmetry

The intersection seam is depicted in Fig. 5 and 6.
Figure 5 displays the projection of the seam path on
the plane of the shape coordinates n1; n2. The points A
through C on Fig. 5 are the uniquely calculated points;
the rest of the seam was generated by symmetry. The
point marked C is the actual starting point in the
calculations. It is the location of the previously reported
intersection point I3 in C2v symmetry, very near the
transition point between the two minima on the lower
surface (marked M0 and M1). It is apparent from Fig. 5
that the seam is a closed path. It intersects each of the
three C2v lines in two points: the symmetry-related points
C, F, H are the originally known points I1; I2; I3; the
symmetry-related points A, E, G are new points.
Figure 6 shows the variation of the molecular circum-
ference r [related to x3 according to Eqs. (1) and (5)]
along the seam. Figure 7 illustrates the variation of the
molecular shape along the seam path. Point C is in the
center, with the 116° apex angle of the isosceles
molecules at the top. As the molecule moves along the
path toward point A the top atom moves down and to
the right, closing in on the lower right-hand atom until a
new C2v axis appears, now bisecting the two atoms at
right. Table 1 lists the bond lengths for the points
M3;M0;C, and A.

Because of the very short bond length of r23 at point A
and the correspondingly small bond angle at atom 1

Fig. 5. Projection of the 11A¢-2¢A¢ intersection seam of ozone onto the
scale-independent shape coordinate space
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(about 33.5°), the molecule is obviously very unstable at
this geometry. The energy along the seam is displayed in
Fig. 8, which con®rms that the C2v intersections A, E, G
lie in a highly repulsive region of the PES. The repulsive
character in the region of point A is also illustrated by
Fig. 9, which shows a projection of the intersection seam
on the PES contour map for the circumference r � 4:6 ÊA,
which is about midway on the seam. Even for this con-
stant value of r, the energy di�erence between the two
di�erent C2v points A and C is about 80 mh. Because of
the variation in r, shown in Fig. 6, the di�erence between
points A and C in Fig. 8 is in fact about 370 mh.

The points at which the intersection seam was actually
determined are indicated by the dots on the abscissa of Fig. 8.

4.3 The intersection seam in C2v symmetry

In Cs symmetry there are two irreps: A
0 (symmetric with

respect to the molecular plane) and A00 (antisymmetric
with respect to the molecular plane). The two irreps of
C2v, labeled A1 and B2, are compatible with the A0 irrep

of Cs, while the A2 and B1 irreps of C2v correspond to the
A00 irrep of Cs.

Since the original crossing at pointC, inC2v symmetry,
was between the 11A1 and 21A1 states, these two states
become the states 11A0 and 21A0 when the seam enters Cs
symmetry. However, upon return to C2v symmetry at
point A, only one of the two states is found to return to 1A1;
the other turns out to become 1B2. At this point A, the
intersection is thus not between two states of like sym-
metry, but between two states of di�erent symmetry.

Since the o�-diagonal element H12 between the
diabatic states vanishes automatically between two such
states, there exists only one crossing condition, namely
DH � 0 [see sentence after Eq. (8) above]. Since the
C2v-restricted molecule has two degrees of freedom, the

Table 1 Bond lengths of ozone at various geometries

r13 r23 r12

Point M3 1.305 1.305 2.214

Point M0 1.476 1.476 1.476

Point C 1.477 1.477 1.957

Point A 1.563 0.940 1.563

Fig. 6. Variation of the molecular circumference along the intersec-
tion seam of Fig. 5

Fig. 7. Variation of the molecular shape along the intersection seam
described by Figs. 5 and 6

Fig. 8. Variation of the molecular energy along the intersection seam
described by Figs. 5 and 6

Fig. 9. Projection of the intersection seam, given by Figs. 5 and 6,
onto the contours of the ground state in the plane r = 4.6. Energy
increment between contours = 10 mh
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intersection subspace between 1A1 and 1B2 in C2v is
therefore of dimension 2ÿ 1 � 1 (see Ref. [3]). Hence,
there exists another one-dimensional intersection seam
between the states we are considering, a seam that is
constrained to lie entirely in C2v, and also passes through
point A. The seam in Cs which was displayed in Fig. 5
must then connect with this C2v-constrained seam at
right angles at point A. This is con®rmed by Fig. 10,
which shows contours of the energy di�erence between
the 11A1 and the 11B2 states in the C2v plane near point
A. The dashed contours indicate where 11B2 is lower in
energy and the solid contours indicate where 11A1 is
lower. The solid line is the intersection seam between the
two states in C2v. The large dot marks the point A where
the intersection seam, which we determined in Cs,
extrapolates to the C2v coordinate plane. It is seen to fall
exactly on the independently determined 1A1 ÿ 1B2

intersection seam.

4.4 The intersection node

We call the con¯uence A of the two seams a node. Here
the standard dimensionality rules [3] regarding intersec-
tions require a modi®cation which is readily understood
in terms of the derivation of these rules (see, for
example, our discussion in Ref. [3b]): In the present
case we have, in the region of interest, two surfaces on
which H12 � 0 (one of them being the C2v-conserving

coordinate subspace) and one surface on which
H11 ÿ H22 � 0, as illustrated in Fig. 11. The intersection
of all three of these two-dimensional surfaces is the node
A. The degeneracy is maintained on the two lines (Seam
1 and Seam 2) where the surface with H11 ÿ H22 � 0
intersects with each of the two surfaces H12 � 0. The
degeneracy is lifted on the line where the two surfaces
H12 intersect with each other, i.e the branching line [3b].
In moving away from the node A, the degeneracy is
lifted (to ®rst order) only in directions with a component
along the branching line.

Nodes such as A may be called semi-conical in the
following sense: Any plane containing the branching axis
also containes one vector perpendicular to it. Along this
vector, the degeneracy is preserved to ®rst order and, in
such a plane, the energy di�erence between the upper
and the lower state has therefore the shape of an ellip-
soidal ``semi-cone'' with an opening angle of 180° in one
direction. This conclusion is clearly illustrated by the
near-equidistant contours in Fig. 10. Such semi-conical
intersection con¯uences have also been encountered by
Kuntz et. al. [4], who furthermore showed that the
concomitant degeneracy of the two lowest eigenvalues of
the Hessian of �E1 ÿ E2�2 requires special precautions in
methods using such Hessians.

4.5 The phase theorem

Near intersection nodes such as A, the geometric phase
theorem [3], pertaining to wavefunction changes on
closed loops, also requires modi®cation. The situation is
most easily understood in terms of the reasoning
discussed above in Section 3.3.

First, a closed loop necessarily crosses the surface
DH=H11±H22=0 an even number of times since the
latter divides the space into two half spaces. In one of
these, the diabatic state /1 is dominant, in the other the
diabatic state /2 is dominant for a given adiabatic state
w. Second, whenever the loop crosses a surface H12=0,
the coe�cient of the non-dominant diabatic admixture
changes its sign. It follows then that w will change sign, if
and only if the loop satis®es two conditions:

Fig. 10. Contours of the energy di�erence [E(11B2)-E(1
1A1)] in the

C2v restricted coordinated space near point A. The internal
coordinates are the Cartesian coordinates of the end atom (see
Fig. 3 of ref. [1]). Energy increment = 10 mh. Solid lines, >0; dashed
lines, <0; bold contour = 0 � intersection seam in C2v. The dot
indicated as A is the point where the intersection seam given by Figs. 5
and 6 penetrates this x-y plane. Asterisk: see Sect. 4.5

Fig. 11. Intersection seams near the con¯uence point A. H11, H22,
H12 are matrix elements between diabatic states
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(i) The loop crosses the surface DH=0 at leat once;
(ii)While on each side of the surface DH=0, the loop

crosses the surfaces H12=0 an odd number of times.

In the space depicted by Fig. 11, it is obviously possible
to construct loops which either satisfy both conditions
or violate one or the other. A simple example of the
latter kind would be any loop circling the node A in a
plane containing A, but not containing any one of the
three axes. No phase change will occur on such loops.

4.6 Complete intersection seam

It is obvious that entirely equivalent situations must
exist in the other two C2v-restricted coordinate spaces
which are obtained through rotations by �120° around
the x3 axis. We have not explored the full extent of the
intersection seam between the 11A1 and 1

1B2 states since
it lies in a dynamically rather inaccessible region of the
C2v coordinate space. Two possibilities for these addi-
tional seams, viz. an open seam and a closed seam, are
schematically sketched in Fig. 12. This ®gure displays all
four branches of the entire seam: the branch in Cs is
denoted by S0, the three C2v branches by S1; S2 and S3.

4.7 Orbital interpretation of the symmetry change

The symmetry change of one of the two states from A1 at
point A of Fig. 5 to B2 at point C can be understood by
the following reasoning in terms of orbital stabilities.

In Cs, the FORS wave function is constructed from
12r-type MOs, belonging to the irrep A0, and 3p-type
MOs, belonging to irrep A00. It is found that, along the

entire seam and for both states, nine natural orbitals of
A0 symmetry (three core and six valence orbitals) main-
tain near-constant double occupancy, whereas two nat-
ural orbitals of this symmetry remain e�ectively empty
throughout. In addition, one natural orbital of A00 sym-
metry maintains near-double occupancy along the entire
seam. This leaves three orbitals whose occupancies vary
signi®cantly in going from point C to point A, namely

r � j10a0i; p1 � j2a00i; p2 � j3a00i:
Figure 13 exhibits plots of the three orbitals for three
points along the seam. The r orbitals are plotted in the
molecular plane, the p orbitals in a plane above and
parallel to the molecular plane. At further intermediate
points, the analogous plots look similar. The orbital
symmetries are also given in these plots. It may be noted
that, because of a degeneracy in the occupation numbers
in both states at point A (see below), the two p orbitals
can be arbitrarily superimposed and, thereby, two
orbitals similar to those at the intermediate point can
be generated. (The orbitals plotted are the FORS
optimized orbitals which are nearly identical with the
natural orbitals).

In Fig. 14, we show the variations of the natural or-
bital occupation numbers along the seam in going from
point C to point A. The label INT indicates the point on
the seam to which the intermediate orbitals of Fig. 13
belong. The solid dots represent the natural orbital oc-
cupations of state 1, the hollow dots those of state 2. As
was mentioned earlier, the calculated states are not ex-
actly degenerate, but di�er by about 0.5 lh. This dif-
ference is su�cient to maintain the character of the two
wave functions so that the orbital occupations do follow
non-erratic, continuous curves. We denote the lower
state as ``state 1'' and the higher state as ``state 2''.

Fig. 12. Two possibilities for the four branches of the 11A¢-21A¢
intersection seam in the shape-scale coordinate space. Shaded planes,
C2v-restricted coordinate regions

Fig. 13. Natural orbitals of ozone at three points along the seam
from point C to point A. Contours of r orbitals, in a molecular plane
contours of p, in a plane above and parallel to molecular plane
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For state 1, one recognizes the following occupation
changes. In going from point C to point A, the orbitals
p1 and p2 each lose one electron and both electrons go
into the orbital r. The presumed reason is that r mani-
festly changes from an anti-bonding to a bonding or-
bital, whereas the p1, p2 set changes from slightly anti-
bonding to more strongly anti-bonding. State 2 exhibits
a compensating charge shift in the opposite direction
which is attributable to the maintenance of orthogo-
nality between the two states.

The coe�cients of the dominant con®gurations of
both states are listed in Table 2. It is seen that the single
occupation of orbitals p1 and p2 in state 1 at point A result
from a con®guration in which both these orbitals are
singly occupied so that the wave function of state 1 be-
longs indeed to the irrep A2 
 B1 � B2. At point C it
manifesty belongs to the irrep A1. State 2, however, has
only dominant con®gurations with doubly occupied or-
bitals throughout, so that it always belongs to the irrepA1.

4.8 Another intersection seam of the 11A1 state

In the course of the present work it was noticed that, in
the C2v-restricted space near the point A, the state 11A1

comes very close to another 1A1 state. Since, at this point
in the C2v subspace, the 1

1B2 surface is lowest in energy, it
is in fact part of the 11A0 surface of the overall Cs
symmetry, whereas the 11A1 state (of C2v symmetry)
becomes 21A0 in Cs notation. The new state is therefore
31A0. Minimization of DE2 and use of the Herzberg±
Longuet-Higgins±Berry phase-change theorem proved
that these two states of like symmetry �11A1 � 21A0
and 21A1 � 31A0�, too, intersect in C2v symmetry. This
point is marked with an asterisk in Fig. 6. It lies
approximately 25 mh higher in energy than the inter-
section point A. From the general dimensionality rules it
follows that another one-dimensional intersection seam
involving the 21A0 and 31A0 states may exist, leading into
Cs symmetry from this new intersection point.

5 Conclusions

The intersection seam between the lowest two 1A0 states
of ozone has a multi-connected structure. It consists of
four branches S0; S1; S2; S3 which are connected through
four knots, as illustrated in Fig. 12. The knots and the
three C2v-restricted branches S1; S2; S3 lie, however, in a
highly repulsive part of the PES. The S0 branch cuts
through C2v symmetry at two kinds of points. At the
low-energy C2v points both states have 1A1 symmetry,
but, at the high-energy C2v points (the knots) one state
has 1A1 symmetry and the other has

1B2 symmetry. This
change is due to changes in orbital stabilites along the
seam.

However, a large part of the branch S0 in Cs sym-
metry lies at relatively low energies and, thus, o�ers
ample opportunity for radiationless transitions (see
Fig. 8). Hence, a discussion of such transitions, taking
into account solely the minimum on the intersection
seam (as is occasionally proposed), will manifestly yield
an inadequate analysis. Furthermore, we shall show el-
sewhere [14] that the seam is imbedded in a region where
the energy di�erence between 11A0 and 21A0 is small.

Intersections with further surfaces exist.
The method of ``corralling an intersection'' deserves

further attention. It is based on identifying the curves on
which the diabatic energy functions DH and H12 vanish
by means of monitoring the sign and magnitude changes
of the dominant coe�cients of the adiabatic states.
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